วันศุกร์ที่ 22 กันยายน พ.ศ. 2560

พลังงานนิวเคลียร์

พลังงานนิวเคลียร์

พลังงานนิวเคลียร์ เป็นพลังงานรูปแบบหนึ่ง ที่ได้จากปฏิกิริยานิวเคลียร์ นิวเคลียร์ เป็นคำคุณศัพท์ของ
คำว่า นิวเคลียส ซึ่งเป็นแก่นกลางของอะตอมธาตุ ซึ่งประกอบด้วยอนุภาคโปรตอน และนิวตรอน ซึ่งยึด
กันได้ด้วยแรงของอนุภาคไพออน

ชนิดของพลังงานนิวเคลียร์ 
 พลังงานที่ถูกปล่อยออกมาจากแร่กัมมันตภาพรังสีจะปล่อยออกมาเมื่อมีการแยกหรือการรวม หรือเปลี่ยน
แปลงของนิวเคลียสภายในอะตอม ซึ่งเรียกว่า ปฏิกิริยานิวเคลียร์ แบ่งได้เป็น ชนิด คือ
 1.ปฏิกิริยาฟิชชัน (Fission) เป็นพลังงานที่เกิดจากการแตกตัว หรือแยกตัวของธาตุหนัก เช่น ยูเรเนียม 
พลูโตเนียม เมื่อถูกชนด้วยอนุภาคนิวตรอน เช่น ระเบิดปรมาณู
 2.ปฏิกิริยาฟิวชัน (Fussion) เป็นพลังงานที่เกิดจากการรวมตัวของธาตุเบาเช่น การรวมตัวของธาตุ กับ
 He บนดวงอาทิตย์
 3.ปฏิกิริยาที่เกิดจากการสลายตัวของธาตุกัมมันตรังสี (Redioactivity) ได้แก่ ยูเรเนียม เรเดียม พลูโตเนียม
 ฯลฯ ธาตุเหล่านี้จะปลดปล่อยรังสีและอนุภาคต่าง ๆ ออกมา เช่น อนุภาคแอลฟา อนุภาคเบตา รังสีแกมม
า และอนุภาคนิวตรอน
4.ปฏิกิริยาที่ได้จากเครื่องเร่งอนุภาคที่มีประจุ (Particale Accelerrator) เช่น โปรตอนอิเล็กตรอน 
ดิวทีเรียมและอัลฟา
รูปแบบของพลังงานนิวเคลียร์  
สามารถถูกจัดแบ่งออกได้เป็นประเภท ตามลักษณะวิธีการปลดปล่อยพลังงานออกมาคือ
1.พลังงานนิวเคลียร์ที่ถูกปลดปล่อยออกมาในลักษณะเฉียบพลัน  เป็นปฏิกิริยานิวเคลียร์ที่ควบคุมไม่ได้
 (Uncontrolled nuclear reactions) พลังงานของปฏิกิริยาจะเพิ่มสูงขึ้นอย่างรวดเร็ว เป็นเหตุให้เกิดการ
ระเบิด (Nuclear explosion) สิ่งประดิษฐ์ที่ใช้หลักการเช่นนี้ ได้แก่ ระเบิดปรมาณู (Atomic bomb) หรือระเบิดไฮโดรเจน
และหัวรบนิวเคลียร์แบบต่าง ๆ (ของอเมริกาเรียกว่าจรวด Pershing, ของรัสเซียเรียกว่า จรวด SS-20) 
 2.พลังงานจากปฏิกิริยานิวเคลียร์ ซึ่งควบคุมได้ ในปัจจุบันปฏิกิริยานิวเคลียร์ซึ่งควบคุมได้ตลอดเวลา 
(Controlled nuclearreaction)ซึ่งมนุษย์ได้นำเอาหลักการมาพัฒนาขึ้นจนถึงขั้นที่นำมาใช้ประโยชน์ใน
ระดับขั้นการค้าหรือบริการสาธารณูปโภคได้แล้ว มีอยู่แบบเดียว  คือ  ปฏิกิริยาฟิชชันห่วงโซ่ของไอโซ
โทปยูเรเนียม -235  และของไอโซโทปที่แตกตัวไ  ด้ (Fissileisotopes)  อื่น ๆ  อีก ชนิด (ยูเรเนียม -233
 และพลูโตเนียม -239) สิ่งประดิษฐ์ซึ่งทำงานโดยหลักการของปฏิกิริยาฟิชชันห่วงโซ่ของเชื้อเพลิง
นิวเคลียร์ ซึ่งมีที่ใช้กันอย่างแพร่หลายอยู่ในปัจจุบัน ได้แก่
เครื่องปฏิกรณ์นิวเคลียร์หรือเครื่องปฏิกรณ์ปรมาณู (Nuclearreactors) 
 3.พลังงานนิวเคลียร์จากสารกัมมันตรังสี  สารกัมมันตรังสีหรือสารรังสี (Radioactivematerial)  คือสารที่
องค์ประกอบส่วนหนึ่งมีลักษณะเป็นไอโซโทปที่มีโครงสร้างปรมาณูไม่คงตัว (Unstable isotipe) และจะ
สลายตัวโดยการปลดปล่อยพลังงานส่วนเกินออกมาในรูปของรังสีแอลฟา รังสีบีตา รังสีแกมมาหรือ
รังสีเอกซ์รูปใดรูปหนึ่ง หรือมากกว่าหนึ่งรูปพร้อม ๆ กัน ไอโซโทปที่มีคุณสมบัติดังกล่าวนี้เรียกว่า
ไอโซโทปกัมมันตรังสี หรือไอโซโทปรังสี (Radioisotope)
อนุภาคมูลฐานของอะตอม

 
1.สัญลักษณ์นิวเคลียร์ คือ สัญลักษณ์ที่เขียนแสดงเลขมวลและเลขอะตอม


เลขอะตอม แสดงถึงจำนวนโปรตอนในอะตอม มีค่าเท่ากับจำนวนอิเล็กตรอน
เลขมวล แสดงถึงผลรวมของจำนวนโปรตอนกับนิวตรอน 
1. ไอโซโทป คือ ธาตุที่มีเลขอะตอมเหมือนกัน เลขมวลต่างกัน หรือ ธาตุที่มีโปรตอนเท่า แต่ นิวตรอนต่าง
2. ไอโซโทน คือ ธาตุที่มีนิวตรอนเท่า แต่ โปรตอนต่าง
3. ไอโซบาร์ คือ ธาตุที่มีเลขมวลเท่า แต่ เลขอะตอมต่าง

          
3. ธาตุกัมมันตรังสี
ธาุกัมมันตรังสี คือ ธาตุที่มีสมบัติในการแผ่รังสี
กัมมันตภาพรังสี คือ ปรากฏการณ์ที่ธาตุแผ่รังสีได้อย่างต่อเนื่อง

 หมายเหตุ ถ้าเปรียบเทียบอำนาจทะลุทะลวง แอลฟา บีตา แกมมา จากน้อยไปมากจะเป็น 
แอลฟา บีตา แกมมา



โรงไฟฟ้านิวเคลียร์  คือ โรงไฟฟ้าพลังความร้อนชนิดหนึ่งใช้ความร้อนทำให้น้ำเดือดกลายเป็นไอน้ำไป
หมุนกังหัน เพื่อหมุนเครื่องกำเนิดไฟฟ้าทำการผลิตไฟฟ้า ความแตกต่างอยู่ที่แหล่งกำเนิดความร้อนซึ่งได้
มาจากปฏิกิริยานิวเคลียร์แทนที่จะเป็นการเผาไหม้ของเชื้อเพลิง น้ำมัน ถ่านหิน หรือก๊าซธรรมชาติ

ผลการค้นหารูปภาพสำหรับ โรงไฟฟ้านิวเคลียร์

เชื้อเพลิง  ใช้แร่ยูเรเนียมเป็นเชื้อเพลิงแต่ต้องผ่านกระบวนการแปลงสภาพ ให้เป็นเม็ดรูปทรงกระบอก

ขนาดกว้าง และสูง 1x1เซนติเมตร บรรจุเรียงกันไว้ในแท่งแล้วมัดรวมกันไว้เป็นมัด ๆ เสียก่อน จากนั้นจึ
งจะนำไปใช้งานได้โดยใส่ไว้ภาชนะที่เรียกว่า เตาปฏิกรณ์เพื่อให้เกิดปฏิกิริยานิวเคลียร์และความร้อน 
การใส่เชื้อเพลิงอาจจะกระทำเป็นรายวันหรือปีละครั้งซึ่งขึ้นอยู่กับประเภทของโรงไฟฟ้า โรงไฟฟ้า
นิวเคลียร์ขนาดใหญ่ใช้แร่ยูเรเนียมดิบประมาณปีละ 200 ตัน (แปลงสภาพแล้วเหลือเพียง 30 ตัน) ภูมิภาค
ที่มีแร่ยูเรเนียมเป็นจำนวนมาก ได้แก่ อเมริกาเหนือ อัฟริกา ออสเตรเลีย และยุโรป สำหรับในเอเชียก็มี
รวมทั้งโลกมีแร่ยูเรเนียมประมาณ 14ล้านตัน ซึ่งมีมากพอที่จะใช้อีกเป็นร้อย ๆ ปี
ผลกระทบสิ่งแวดล้อม โรงไฟฟ้านิวเคลียร์มีผลกระทบต่อสิ่งแวดล้อมน้อย กล่าวคือ
ไม่มีเสียงดังเลย

ไม่มีเขม่า ควัน หรือก๊าซต่าง ๆ ที่จะทำให้อากาศเสีย เนื่องจากไม่มีการเผาไหม้
ไม่มีก๊าซที่จะทำให้เกิดฝนกรดและภาวะเรือนกระจก
น้ำที่ปล่อยออกมาจากโรงไฟฟ้านิวเคลียร์ไม่มีรังสี และมีสภาพเหมือนกับโรงไฟฟ้าพลังความร้อน
ทั่วๆ 
มีแผนและมีมาตรการป้องกันผลกระทบต่อสิ่งแวดล้อมที่อาจเกิดขึ้นตลอดเวลา
การใช้ประโยชน์จากพลังงานนิวเคลียร์ด้านอื่น
ด้านกำลัง พลังงานนิวเคลียร์ที่ปล่อยออกมาในรูปความร้อนสามารถนำไปใช้ในการขับเคลื่อนยานอวกาศ เรือเดินสมุทรขนาดใหญ่ ผลิตกระแสไฟฟ้า และอื่น ๆ

ด้านอุตสาหกรรม ใช้ในการเหนี่ยวนำให้เกิดการเปลี่ยนแปลงทางเคมี ทางกายภาพและชีวภาพ ในสาร
ตัวกลาง เช่น กำจัดจุลินทรีย์บางชนิดในอาหารและขยะ การเปลี่ยนแปลงสีของอัญมณีหรือเครื่องประดับ 
เป็นต้น นอกจากนี้ยังสามารถใช้ตรวจสอบและรักษาด้านระบบควบคุมในกระบวนการผลิตในโรงงาน
อุตสาหกรรม
ด้านการเกษตรใช้ในการเปลี่ยนแปลงพันธุ์พืช ปรับปรุงและขยายพันธุ์พืช และกำจัดแมลงศัตรูพืช
ด้านการแพทย์ ใช้ในการตรวจรักษาและวินิจฉัยโรค เช่น การเอ๊กซเรย์ การรักษาโรคมะเร็ง เป็นต้น


คลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้า


1. ลักษณะคลื่นแม่เหล็กไฟฟ้า
    เป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้า (E) และสนามแม่เหล็ก(B) มีการสั่นในแนวตั้งฉากกัน 
และอยู่บนระนาบตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่ไม่ต้องอาศัย
ตัวกลางในการเคลื่อนที่ จึงสามารถเคลื่อนที่ในสุญญากาศได้

กฎมือขวา  ให้นิ้วชี้ไปตามแกนสนามไฟฟ้า กำนิ้วที่เหลือลงมาทางสนามแม่เหล็ก นิ้วหัวแม่มือจะ
แสดงการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้า
    - การเปลี่ยนแปลงของสนามไฟฟ้า ทำให้เกิดการเปลี่ยนแปลงของสนามแม่เหล็ก
    - การเปลี่ยนแปลงของสนามแม่เหล็ก ทำให้เกิดการเปลี่ยนแปลงของสนามไฟฟ้า

2. สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า



สิ่งที่ควรรู้
1. ถ้าเรียงลำดับสเปกตรัมของคลื่นแม่เหล็กไฟฟ้าจากความยาวคลื่นจากมากไปน้อย จะได้ วิทยุ 
ไมโครเวฟ อินฟาเรด แสง อัลตราไวโอเลต รังสีเอ็กซ์ รังสีแกมม่า
2. ความเร็ซในการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ มีค่าเท่ากับ 3x10 กำลัง 8เมตร/วินาที
3. ความสัมพันธ์ระหว่าง ความยาวคลื่น ความถี่ และความเร็ว เป็นดังนี้
                      C = ความเร็วของคลื่นแสง มีค่า = 3 x 10 8 m/s หรือ เขียนหน่วยเป็น ms-1
 4แสง มีความยาวคลื่น 400 nm - 700 nm เรียงจากความยาวคลื่นจากน้อยไปมาก คือ ม่วง คราม 
น้ำเงิน เขียว เหลือง แสด แดง

 5. ความยาวคลื่น = ความเร็วแสง / ความถี่
ความยาวคลื่น ( http://www.rmutphysics.com/PHYSICS/oldfront/100/2/emw1_files/lamda.gif) = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m)
ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz)
ความเร็วแสง (c) = 300,000,000 เมตร/วินาที (m/s)

ประเภทคลื่นแม่เหล็กไฟฟ้า

1. คลื่นวิทยุ  มีความถี่ช่วง 104 - 109 Hz( เฮิรตซ์ ) ใช้ในการสื่อสาร คลื่นวิทยุมีการส่งสัญญาณ 2 ระบบคือ
1.1 ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่น
วิทยุเรียกว่า "คลื่นพาหะโดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง  
ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับผิว
โลกและคลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้อง
ใช้สายอากาศตั้งสูงรับ
1.2 ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่น
พาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง 
ในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่าย
ทอดและเครื่องรับต้องตั้งเสาอากาศสูง ๆ รับ 
2. คลื่นโทรทัศน์และไมโครเวฟ คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ใน
การสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก 
ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง 
และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลกอาจใช้
ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่
ไกล ๆเนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของ
อากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับ
คลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณ
ไมโครเวฟได้ 
3รังสีอินฟาเรด รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร
ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็น
การควบคุมระยะไกลหรือรีโมทคอนโทรลกับเครื่องรับโทรทัศน์ได้ 
4. แสง แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประ
สาทตาของมนุษย์รับได้
ผลการค้นหารูปภาพสำหรับ สเปกตรัมของแสง
5. รังสีอัลตราไวโอเลต  หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่
มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์
รังสีอัลตราไวโอเลต สามารถทำให้เชื้อโรคบางชนิดตายได้ แต่มีอันตรายต่อผิวหนังและตาคน 
6. รังสีเอกซ์ รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถ
ทะลุสิ่งกีดขวางหนา ๆ ได้ หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทาง
การแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย ในวงการอุตสาหกรรมใช้ในการตรวจหาร
อยร้าวภายในชิ้นส่วนโลหะขนาดใหญ่ ใช้ตรวจหาอาวุธปืนหรือระเบิดในกระเป๋าเดินทาง และศึกษาการ
จัดเรียงตัวของอะตอมในผลึก
7. รังสีแกมมา ามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจาก
ปฏิกิริยานิวเคลียร์และสามารถกระตุ้นปฏิกิริยานิวเคลียร์ได้ มีอำนาจทะลุทะลวงสูง
ความรู้เพิ่มเติม

เสียง

 เสียง
2.1การเกิดเสียงและการเคลื่อนที่ของเสียง
-เสียงเป็นคลื่นกล เพราะมีสมบัติการสะท้อน การหักเห การแทรกสอด และการเลี้ยงเบน
-เสียงเป็นคลื่นกลตามยาว เพราะต้องอาศัยตัวกลางในการเคลื่อนที่  ตัวกลางสั่นขนานกับทิศการเคลื่อนที่ของคลื่น
-โมเลกุลของอากาศในบริเวณที่เป็นส่วนอัดจะมีมากกว่าเดิม ทำให้ความดันของอากาศบริเวณส่วนอัดมีค่าเพิ่มขึ้น
-โมเลกุลของอากาศในบริเวณที่เป็นส่วนขยายจะมีมากกว่าเดิม ทำให้ความดันของอากาศบริเวณส่วนอัดมีค่าลดลง
2.2 ความถี่ อัตราเร็ว และความยาวคลื่น
2.2.1. ความถี่ของเสียง ใช้บอกระดับเสียง ความถี่สูงจะมีระดับเสียงสูงและแหลม ถ้ามีความถี่ต่ำจะมีระดับเสียงต่ำและทุ้ม
-มนุษย์ทั่วไปได้ยินเสียงในช่วงความถี่ 20 - 20000 เฮิรตซ์
-ความถี่ต่ำกว่า 20 เฮิรตซ์ เรียกว่า อินฟาโซนิก เช่น การสื่อสารของช้าง
-ความถี่สูงกว่า 20000 เฮริตซ์ เรียกว่า อัลตราโซนิค เช่น การหาอาหารของค้างคาว โลมา วาฬ
2.2.2. อัตราเร็วของเสียง ขึ้นอยู่กับสภาพตัวกลาง เช่น อุณหภูมิ ความหนาแน่น ความยืดหยุ่น เป็นต้น อัตราเร็วเสียงที่เคลื่อนที่ผ่านตัวกลางที่มีอุณหภูมิสู.จะมีค่ามากกว่าตัวกลางที่มีอุณภูมิต่ำ
2.2.3. อัตราเร็วเสียงในอากาศ จะแปรผันตรงกับรากที่สองของอุณภูมิในหน่วยเคลวิน
-อุณหภูมิมาก อัตราเร็วมาก
-อุณภูมิน้อย อัตราเร็วน้อย
-ขณะอุณภูมิ + องศาเซลเซียส อัตราเร็วเสียงจะมีค่าประมาณ 331 เมตร/วินาที


                                   *สูตรนี้จะให้ค่าใกล้เคียงความจริง เมื่ออุณภูมิมีค่าไม่เกิน 45 องศาเซลเซียส*
2.3 คุณสมบัติของเสียง
2.3.1. การสะท้อน  เมื่อคลื่นเสียงตกกระผิวรอยต่อระหว่างตัวกลาง หรือตัวกลางขนิดเดียวกันแต่อุณหภูมิต่างกัน หรือตกกระทบสิ่งกีดขวางที่มีขนาดเท่ากันกับหรือโตกว่าความยาวคลื่นเสียงนั้น จะเกิดการสะท้อนเสียง

1. เมื่อคลื่นเสียงตกกระทบ ความถี่ ความเร็ว ความยาวคลื่น และแอมพลิจูด จะสะท้อนออกของเดิม
2. การเคลื่อนที่จากตัวกลางหนาแน่นน้อย ไป มาก การกระจัดที่สะท้อนมีเฟสตรงข้าม
3. การเคลื่อนที่จากตัวกลางหนาแน่นมาก ไป น้อย การกระจัดที่สะท้อนจะมีเฟสคงเดิม
4. ถ้าเสียงที่สะท้อนกลับมาสู๋หูของเราช้ากว่าเสียงที่ตะโกนออกไปเกินกว่า 0.1 วินาที หูของเราจะสมารถแยกเสียงตะโกนและเสียงที่สะท้อนกลับมาได้ เราเรียกว่า การเกิดเสียงก้อง
5. จากความรู้การสะท้อนของเสียง นำไปสร้างเครื่อวโซนาร์ ใช้หาความลึกของทะเล หาฝูงปลาในทะเล สร้างเครื่องอัลตราซาวด์ 
 2.3.2. การหักเห คลื่นเสียงเมื่อเดินทางผ่านตัวกลางที่มีความหนาแน่นแตกต่างกันจะเกิดการเปลี่ยนแปลงทิศทางความเร็วและความยาวคลื่น แต่ความถี่คลื่นยังคงที่ กล่าวคือเมื่อเสียงเคลื่อนที่จากตัวกลางที่มีความหนาแน่นน้อย (อากาศ) เข้าสู่ตัวกลางที่มีความหนาแน่นมากกว่า(น้ำ)  เสียงจะหักเหออกจากเส้นตั้งฉาก หลักการนี้ใช้อธิบาย การเห็นฟ้าแลบ แต่ไม่ได้ยินเสียงฟ้าร้อง เพราะเมื่อเกิดฟ้าแลบ แม้จะมีเสียงเกิดขึ้นแต่เราไม่ได้ยินเสียง ทั้งนี้เพราะอากาศใกล้พื้นดินมีอุณหภูมิสูงกว่าอากาศเบื้องบน ทำให้การเคลื่อนที่ของเสียงเคลื่อนที่ได้ในอัตราที่ต่างกัน คือ เคลื่อนที่ในอากาศที่มี อุณหภูมิสูงได้เร็วกว่าในอากาศที่มีอุณหภูมิต่ำ ดังนั้น เสียงจึงเคลื่อนที่เบนขึ้นทีละน้อยๆ จนข้ามหัวเราไป จึงทำให้ไม่ได้ยินเสียงฟ้าร้อง

1. บริเวณที่มีอุณภูมิสูง เสียงจะเคลื่อนที่ด้วยอัตราเร็วมากกว่าบริเวณที่มีอุณภูมิต่ำ
2. เสียงเคลื่อนที่จากบริเวณที่มีอุณภูมิสูงไปสู่บริเวณที่มีอุณภูมิต่ำ คลื่นเสียงจะหักเหเข้าเส้นแนวฉาก
3. เสียงเคลื่อนที่จากบริเวณที่มีอุณภูมิต่ำไปสู่บริเวณที่มีอุณภูมิสูกว่า เสียงจะหักเหออกจาเส้นแนวฉาก
4. ในเวลากลางวันพื้นโลกจะมีอุณภูมิสูงกว่าอุณหภูมิที่ระดับสูงจากพื้นโลกขึ้นไปทำให้เสียงหักเหขึ้นสู่ที่สูง ส่วนในเวลากลางคืนอุณหภูมิที่พื้นโลกจะต่ำกว่าอุณภูมิที่ระดับสูงกว่าพื้นโลกทำให้เสียงหักเหลงสู่พื้น
 2.3.3. การแทรกสอด  ถ้าแหล่งกำเนิดเสียง แหล่ง ที่มีแอมพลิจูด และความถี่เท่ากัน ซึ่งมีเฟสตรงกันหรือต่างกันคงตัว เคลื่อนที่มาซ้อมทับกัน แล้วทำให้เกิดจุดปฏิบัพ (เสียงดัง) และจุดบัพ (เสียงค่อย) สลับกัน
2.3.4. การเลี้ยวเบน นอกจากการหักเหของเสียงที่เกิดขึ้น เมื่อผ่านตัวกลางต่างชนิดกันแล้วยังมีการเลี้ยวเบนได้ การเลี้ยวเบนของเสียงมักจะเกิดพร้อมกับการสะท้อนของเสียง เสียงที่เลี้ยวเบน จะได้ยินค่อยกว่าเดิม เพราะพลังงานของเสียงลดลง
ในชีวิตประจำวันที่เราพบได้อย่างเสมออย่างหนึ่งคือการได้ยินเสียงของผู้อื่นได้โดยไม่เห็นตัวผู้พูด เช่น ผู้พูดอยู่คนละด้านของมุมตึก ปรากฏการณ์ดังนี้ แสดงว่าเสียงสามารถเลี้ยวเบนได้  การอธิบายปรากฏการณ์นี้สามารถจะกระทำได้โดยใช้หลักการของฮอยเกนท์อธิบายว่า ทุกๆจุดบนหน้าคลื่นสามารถทำหน้าที่เป็นต้นกำเนิดคลื่นอันใหม่ได้  ดังนั้นอนุภาคของอากาศที่ทำหน้าที่ส่งผ่านคลื่นเสียงตรงมุมตึกย่อมเกิดการสั่น ทำหน้าที่เหมือนต้นกำเนิดเสียงใหม่ ส่งคลื่นเสียงไปยังผู้ฟังได้ 

2.4. เสียงและการได้ยิน
2.4.1. บีตส์ จะเกิดเมื่อเสียง ชุด ที่มีความถี่ต่างกันเล็กน้อย จากแหล่งกำเนิดเสียงประเภทเดียวกันหรือคนละประเภทก็ได้ เคลื่อนที่มาแทรกสอดกันจะเป็นเสียงดังเสียงค่อยสลับกันเป็นจังหวะคงตัว

สมมุติให้ f1 และ f2 แทนความถี่ของเสียงจากแหล่งกำเนิดสองเสียงที่มีความถี่ต่างกันไม่เกิด เฮิรตซ์ เมื่อมาซ้อมทับกันแล้วจะทำให้เกิดบีตส์
    
.4.2. ความเข้มเสียง คือ กำลังเสียงที่แหล่งกำเนิดเสียงส่งออกไปต่อหนึ่งหน่วยพื้นที่ของหน้าคลื่นวงกลม

มื่อ             I  แทน  ความเข้มเสียง ตำแหน่งต่างๆ มีหน่วยเป็นวัตต์ต่อตารางเมตร
                   P แทน  กำลังเสียงของแหล่งกำเนิดเสียง มีหน่วยเป็นวัตต์
                  A แทน  พื้นที่ของหน้าคลื่นทรงกลม มีหน่อยเป็นตารางเมตร
                  R แทน  ระยะจากแหล่งกำเนิดเสียถึงตำแหน่งที่ต้องการหาความเข้มเสียง มีหน่วยเป็น เมตร
สิ่งที่ควรรู้
1. เสียงค่อยที่สุดที่มนุษย์สามารถได้ยินมีความเข้มเสียง 10 กำลัง -12 วัตต์ต่อตารางเมตร
2. เสียงดังที่สุดที่มนุษย์ปกติสามารถทนฟังได้ โดยไม่เป็นอันตราย มีความเข้มเสียงเป็น วัตต์ต่อตาราง
2.4.3. ระดับความเข้มเสียง คือ ปริมาณที่ใช้บอกความดังเสียง โดยเทียวความเข้มเสียงที่ต้องการวัด กับความเข้มเสียงที่ค่อยที่สุดที่คนปกติได้ยิน
ดย คือความเข้มของเสียง มีหน่วยเป็นเดซิเบล
I  คือความเข้มของเสียง
I0 คือความเข้มของเสียงต่ำสุดที่มนุษย์จะได้ยิน คือ 10-12 วัตต์/ตารางเมตร

2.4.4. ปรากฎการณ์ดอปเพลอร์ และคลื่นกระแทก
ปรากฎการณ์ดอปเพลอร์ของเสียง คือ ผู้ฟังได้ยินเสียงที่มีความถี่เปลี่ยนไปจากความถี่ของแหล่งกำเนิดเสียง 
คลื่นกระแทก คือ หน้าคลื่นที่เคลื่อนที่มาเสริมกันในลักษณะที่เป็นคลื่นวงกลมซ้อนเรียงกันไป แหล่งกำเนิดที่เคลื่อนที่ด้วยความเร็วมากกว่าความเร็วของคลื่นในตัวกลาง

    
    a. อัตราเร็วแหล่งกำเนิด น้อยกว่า อัตราเร็วของเสียง
    b. อัตราเร็วแหล่งกำเนิด เท่ากับ อัตราเร็วเสียง
    c. อัตราเร็วแหล่งกำเนิด มากกว่า อัตราเร็วเสียง
2.4.5. คุณภาพเสียงและเสียงดนตรี แหล่งกำเนิดเสียงต่างๆขณะสั่น จะให้เสียงซึ่งมี่ความถี่มูลฐานและฮาร์มอนิกต่างๆ ออกมาพร้อมกันเสมอ แต่จำนวนฮาร์มอนิกและความเข้มเสียงจะแตกต่างกันไป จึงจะทำให้ลักษณะของคลื่นเสียงแตกต่างกันสำหรับแต่ละแหล่งกำเนิดที่ต่างกัน โดยจะมีลักษณะเฉพาะตัวที่ต่างกัน